Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Immunol ; 14: 1144224, 2023.
Article in English | MEDLINE | ID: covidwho-20233158

ABSTRACT

Background: Deep metabolomic, proteomic and immunologic phenotyping of patients suffering from an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have matched a wide diversity of clinical symptoms with potential biomarkers for coronavirus disease 2019 (COVID-19). Several studies have described the role of small as well as complex molecules such as metabolites, cytokines, chemokines and lipoproteins during infection and in recovered patients. In fact, after an acute SARS-CoV-2 viral infection almost 10-20% of patients experience persistent symptoms post 12 weeks of recovery defined as long-term COVID-19 syndrome (LTCS) or long post-acute COVID-19 syndrome (PACS). Emerging evidence revealed that a dysregulated immune system and persisting inflammation could be one of the key drivers of LTCS. However, how these biomolecules altogether govern pathophysiology is largely underexplored. Thus, a clear understanding of how these parameters within an integrated fashion could predict the disease course would help to stratify LTCS patients from acute COVID-19 or recovered patients. This could even allow to elucidation of a potential mechanistic role of these biomolecules during the disease course. Methods: This study comprised subjects with acute COVID-19 (n=7; longitudinal), LTCS (n=33), Recov (n=12), and no history of positive testing (n=73). 1H-NMR-based metabolomics with IVDr standard operating procedures verified and phenotyped all blood samples by quantifying 38 metabolites and 112 lipoprotein properties. Univariate and multivariate statistics identified NMR-based and cytokine changes. Results: Here, we report on an integrated analysis of serum/plasma by NMR spectroscopy and flow cytometry-based cytokines/chemokines quantification in LTCS patients. We identified that in LTCS patients lactate and pyruvate were significantly different from either healthy controls (HC) or acute COVID-19 patients. Subsequently, correlation analysis in LTCS group only among cytokines and amino acids revealed that histidine and glutamine were uniquely attributed mainly with pro-inflammatory cytokines. Of note, triglycerides and several lipoproteins (apolipoproteins Apo-A1 and A2) in LTCS patients demonstrate COVID-19-like alterations compared with HC. Interestingly, LTCS and acute COVID-19 samples were distinguished mostly by their phenylalanine, 3-hydroxybutyrate (3-HB) and glucose concentrations, illustrating an imbalanced energy metabolism. Most of the cytokines and chemokines were present at low levels in LTCS patients compared with HC except for IL-18 chemokine, which tended to be higher in LTCS patients. Conclusion: The identification of these persisting plasma metabolites, lipoprotein and inflammation alterations will help to better stratify LTCS patients from other diseases and could help to predict ongoing severity of LTCS patients.


Subject(s)
COVID-19 , Humans , Cytokines , SARS-CoV-2 , Triglycerides , Proteomics , Inflammation , Chemokines , Syndrome , Apolipoproteins , Lipoproteins
2.
Clin Infect Dis ; 2022 Jun 19.
Article in English | MEDLINE | ID: covidwho-2237813

ABSTRACT

BACKGROUND: The rapid emergence of the omicron variant and its large number of mutations led to its classification as a variant of concern (VOC) by the WHO. Subsequently, omicron evolved into distinct sublineages (e.g. BA1 and BA2), which currently represent the majority of global infections. Initial studies of the neutralizing response towards BA1 in convalescent and vaccinated individuals showed a substantial reduction. METHODS: We assessed antibody (IgG) binding, ACE2 (Angiotensin-Converting Enzyme 2) binding inhibition, and IgG binding dynamics for the omicron BA1 and BA2 variants compared to a panel of VOC/VOIs, in a large cohort (n = 352) of convalescent, vaccinated, and infected and subsequently vaccinated individuals. RESULTS: While omicron was capable efficiently binding to ACE2, antibodies elicited by infection or immunization showed reduced binding capacities and ACE2 binding inhibition compared to WT. Whereas BA1 exhibited less IgG binding compared to BA2, BA2 showed reduced inhibition of ACE2 binding. Among vaccinated samples, antibody binding to omicron only improved after administration of a third dose. CONCLUSION: omicron BA1 and BA2 can still efficiently bind to ACE2, while vaccine/infection-derived antibodies can bind omicron. The extent of the mutations within both variants prevent a strong inhibitory binding response. As a result, both omicron variants are able to evade control by pre-existing antibodies.

3.
iScience ; 25(12): 105643, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2120256

ABSTRACT

HLA-presented antigenic peptides are central components of T cell-based immunity in infectious disease. Beside HLA molecules on cell surfaces, soluble HLA molecules (sHLA) are released in the blood suggested to impact cellular immune responses. We demonstrated that sHLA levels were significantly increased in COVID-19 patients and convalescent individuals compared to a control cohort and positively correlated with SARS-CoV-2-directed cellular immunity. Of note, patients with severe courses of COVID-19 showed reduced sHLA levels. Mass spectrometry-based characterization of sHLA-bound antigenic peptides, the so-called soluble immunopeptidome, revealed a COVID-19-associated increased diversity of HLA-presented peptides and identified a naturally presented SARS-CoV-2-derived peptide from the viral nucleoprotein in the plasma of COVID-19 patients. Of interest, sHLA serum levels directly correlated with the diversity of the soluble immunopeptidome. Together, these findings suggest an inflammation-driven release of sHLA in COVID-19, directly influencing the diversity of the soluble immunopeptidome with implications for SARS-CoV-2-directed T cell-based immunity and disease outcome.

4.
J Pers Med ; 12(11)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090244

ABSTRACT

Several risk scores were developed during the COVID-19 pandemic to identify patients at risk for critical illness as a basic step to personalizing medicine even in pandemic circumstances. However, the generalizability of these scores with regard to different populations, clinical settings, healthcare systems, and new epidemiological circumstances is unknown. The aim of our study was to compare the predictive validity of qSOFA, CRB65, NEWS, COVID-GRAM, and 4C-Mortality score. In a monocentric retrospective cohort, consecutively hospitalized adults with COVID-19 from February 2020 to June 2021 were included; risk scores at admission were calculated. The area under the receiver operating characteristic curve and the area under the precision-recall curve were compared using DeLong's method and a bootstrapping approach. A total of 347 patients were included; 23.6% were admitted to the ICU, and 9.2% died in a hospital. NEWS and 4C-Score performed best for the outcomes ICU admission and in-hospital mortality. The easy-to-use bedside score NEWS has proven to identify patients at risk for critical illness, whereas the more complex COVID-19-specific scores 4C and COVID-GRAM were not superior. Decreasing mortality and ICU-admission rates affected the discriminatory ability of all scores. A further evaluation of risk assessment is needed in view of new and rapidly changing epidemiological evolution.

5.
J Allergy Clin Immunol ; 150(2): 312-324, 2022 08.
Article in English | MEDLINE | ID: covidwho-1983272

ABSTRACT

BACKGROUND: Comorbidities are risk factors for development of severe coronavirus disease 2019 (COVID-19). However, the extent to which an underlying comorbidity influences the immune response to severe acute respiratory syndrome coronavirus 2 remains unknown. OBJECTIVE: Our aim was to investigate the complex interrelations of comorbidities, the immune response, and patient outcome in COVID-19. METHODS: We used high-throughput, high-dimensional, single-cell mapping of peripheral blood leukocytes and algorithm-guided analysis. RESULTS: We discovered characteristic immune signatures associated not only with severe COVID-19 but also with the underlying medical condition. Different factors of the metabolic syndrome (obesity, hypertension, and diabetes) affected distinct immune populations, thereby additively increasing the immunodysregulatory effect when present in a single patient. Patients with disorders affecting the lung or heart, together with factors of metabolic syndrome, were clustered together, whereas immune disorder and chronic kidney disease displayed a distinct immune profile in COVID-19. In particular, severe acute respiratory syndrome coronavirus 2-infected patients with preexisting chronic kidney disease were characterized by the highest number of altered immune signatures of both lymphoid and myeloid immune branches. This overall major immune dysregulation could be the underlying mechanism for the estimated odds ratio of 16.3 for development of severe COVID-19 in this burdened cohort. CONCLUSION: The combinatorial systematic analysis of the immune signatures, comorbidities, and outcomes of patients with COVID-19 has provided the mechanistic immunologic underpinnings of comorbidity-driven patient risk and uncovered comorbidity-driven immune signatures.


Subject(s)
COVID-19 , Metabolic Syndrome , Renal Insufficiency, Chronic , Comorbidity , Humans , Immunity , Metabolic Syndrome/epidemiology , SARS-CoV-2
6.
Sci Rep ; 12(1): 7168, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1890242

ABSTRACT

As global vaccination campaigns against SARS-CoV-2 proceed, there is particular interest in the longevity of immune protection, especially with regard to increasingly infectious virus variants. Neutralizing antibodies (Nabs) targeting the receptor binding domain (RBD) of SARS-CoV-2 are promising correlates of protective immunity and have been successfully used for prevention and therapy. As SARS-CoV-2 variants of concern (VOCs) are known to affect binding to the ACE2 receptor and by extension neutralizing activity, we developed a bead-based multiplex ACE2-RBD inhibition assay (RBDCoV-ACE2) as a highly scalable, time-, cost-, and material-saving alternative to infectious live-virus neutralization tests. By mimicking the interaction between ACE2 and the RBD, this serological multiplex assay allows the simultaneous analysis of ACE2 binding inhibition to the RBDs of all SARS-CoV-2 VOCs and variants of interest (VOIs) in a single well. Following validation against a classical virus neutralization test and comparison of performance against a commercially available assay, we analyzed 266 serum samples from 168 COVID-19 patients of varying severity. ACE2 binding inhibition was reduced for ten out of eleven variants examined compared to wild-type, especially for those displaying the E484K mutation such as VOCs beta and gamma. ACE2 binding inhibition, while highly individualistic, positively correlated with IgG levels. ACE2 binding inhibition also correlated with disease severity up to WHO grade 7, after which it reduced.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Blood Adv ; 6(1): 248-258, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1507130

ABSTRACT

Thromboembolic events are frequently reported in patients infected with the SARS-CoV-2 virus. The exact mechanisms of COVID-19-associated hypercoagulopathy, however, remain elusive. Recently, we observed that platelets (PLTs) from patients with severe COVID-19 infection express high levels of procoagulant markers, which were found to be associated with increased risk for thrombosis. In the current study, we investigated the time course as well as the mechanisms leading to procoagulant PLTs in COVID-19. Our study demonstrates the presence of PLT-reactive IgG antibodies that induce marked changes in PLTs in terms of increased inner-mitochondrial transmembrane potential (Δψ) depolarization, phosphatidylserine (PS) externalization, and P-selectin expression. The IgG-induced procoagulant PLTs and increased thrombus formation were mediated by ligation of PLT Fc-γ RIIA (FcγRIIA). In addition, contents of calcium and cyclic-adenosine-monophosphate (cAMP) in PLTs were identified to play a central role in antibody-induced procoagulant PLT formation. Most importantly, antibody-induced procoagulant events, as well as increased thrombus formation in severe COVID-19, were inhibited by Iloprost, a clinically approved therapeutic agent that increases the intracellular cAMP levels in PLTs. Our data indicate that upregulation of cAMP could be a potential therapeutic target to prevent antibody-mediated coagulopathy in COVID-19 disease.


Subject(s)
COVID-19 , Thrombosis , Calcium , Humans , SARS-CoV-2 , Thrombosis/etiology , Up-Regulation
9.
PLoS One ; 16(6): e0253154, 2021.
Article in English | MEDLINE | ID: covidwho-1278187

ABSTRACT

BACKGROUND: Cohorts of hospitalized COVID-19 patients have been studied in several countries since the beginning of the pandemic. So far, there is no complete survey of older patients in a German district that includes both outpatients and inpatients. In this retrospective observational cohort study, we aimed to investigate risk factors, mortality, and functional outcomes of all patients with COVID-19 aged 70 and older living in the district of Tübingen in the southwest of Germany. METHODS: We retrospectively analysed all 256 patients who tested positive for SARS-CoV-2 in one of the earliest affected German districts during the first wave of the disease from February to April 2020. To ensure inclusion of all infected patients, we analysed reported data from the public health department as well as the results of a comprehensive screening intervention in all nursing homes of the district (n = 1169). Furthermore, we examined clinical data of all hospitalized patients with COVID-19 (n = 109). RESULTS: The all-cause mortality was 18%. Screening in nursing homes showed a point-prevalence of 4.6%. 39% of residents showed no COVID-specific symptoms according to the official definition at that time. The most important predictors of mortality were the need for inpatient treatment (odds ratio (OR): 3.95 [95%-confidence interval (CI): 2.00-7.86], p<0.001) and care needs before infection (non-hospitalized patients: OR: 3.79 [95%-CI: 1.01-14.27], p = 0.037, hospitalized patients: OR: 2.89 [95%-CI 1.21-6.92], p = 0.015). Newly emerged care needs were a relevant complication of COVID-19: 27% of previously self-sufficient patients who survived the disease were not able to return to their home environment after discharge from the hospital. CONCLUSION: Our findings demonstrate the importance of a differentiated view of risk groups and long-term effects within the older population. These findings should be included in the political and social debate during the ongoing pandemic to evaluate the true effect of COVID-19 on healthcare systems and individual functional status.


Subject(s)
COVID-19/prevention & control , Hospitalization/statistics & numerical data , Inpatients/statistics & numerical data , Nursing Homes/statistics & numerical data , Outpatients/statistics & numerical data , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , Data Collection/methods , Data Collection/statistics & numerical data , Female , Germany/epidemiology , Humans , Male , Pandemics , Prevalence , Retrospective Studies , Risk Factors , SARS-CoV-2/physiology
10.
Nature ; 594(7862): 265-270, 2021 06.
Article in English | MEDLINE | ID: covidwho-1246377

ABSTRACT

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


Subject(s)
Blockchain , Clinical Decision-Making/methods , Confidentiality , Datasets as Topic , Machine Learning , Precision Medicine/methods , COVID-19/diagnosis , COVID-19/epidemiology , Disease Outbreaks , Female , Humans , Leukemia/diagnosis , Leukemia/pathology , Leukocytes/pathology , Lung Diseases/diagnosis , Machine Learning/trends , Male , Software , Tuberculosis/diagnosis
11.
Immunity ; 54(7): 1578-1593.e5, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1246000

ABSTRACT

Immune profiling of COVID-19 patients has identified numerous alterations in both innate and adaptive immunity. However, whether those changes are specific to SARS-CoV-2 or driven by a general inflammatory response shared across severely ill pneumonia patients remains unknown. Here, we compared the immune profile of severe COVID-19 with non-SARS-CoV-2 pneumonia ICU patients using longitudinal, high-dimensional single-cell spectral cytometry and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneumonia both showed increased emergency myelopoiesis and displayed features of adaptive immune paralysis. However, pathological immune signatures suggestive of T cell exhaustion were exclusive to COVID-19. The integration of single-cell profiling with a predicted binding capacity of SARS-CoV-2 peptides to the patients' HLA profile further linked the COVID-19 immunopathology to impaired virus recognition. Toward clinical translation, circulating NKT cell frequency was identified as a predictive biomarker for patient outcome. Our comparative immune map serves to delineate treatment strategies to interfere with the immunopathologic cascade exclusive to severe COVID-19.


Subject(s)
COVID-19/immunology , SARS-CoV-2/pathogenicity , Adult , Angiotensin-Converting Enzyme 2/metabolism , Antigen Presentation , Biomarkers/blood , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , COVID-19/pathology , Female , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Immunity, Innate , Immunophenotyping , Male , Middle Aged , Natural Killer T-Cells/immunology , Pneumonia/immunology , Pneumonia/pathology , SARS-CoV-2/immunology , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
12.
Thromb Haemost ; 121(11): 1417-1426, 2021 11.
Article in English | MEDLINE | ID: covidwho-1104586

ABSTRACT

BACKGROUND: Accumulating evidence indicates toward an association between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and procoagulatory state in blood. Thromboelastographic investigations are useful point-of-care devices to assess coagulation and fibrinolysis. OBJECTIVES: We investigated the hypothesis that the procoagulatory state in COVID-19 patients is associated with impaired fibrinolysis system. METHODS: Altogether, 29 COVID-19 patients admitted to normal wards or to the intensive care unit (ICU) were included in this descriptive study. Whole blood samples were investigated by thromboelastography to assess coagulation and fibrinolysis. Additionally, standard routine coagulation testing and immunoassays for factors of fibrinolysis as plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), plasminogen activity and α2-antiplasmin (A2AP) were performed. RESULTS: A significantly increased lysis resistance and a significantly longer time of lysis after adding tissue plasminogen activator were observed in blood samples from ICU COVID-19 patients compared with healthy controls (maximal lysis: 3.25 ± 0.56 vs. 6.20 ± 0.89%, p = 0.0127; lysis time: 365.7 ± 44.6 vs. 193.2 ± 16.3 seconds, p = 0.0014). PAI-1 activity was significantly higher in plasma samples of ICU COVID-19 patients (PAI-1: 4.92 ± 0.91 vs. 1.28 ± 0.33 U/mL, p = 0.001). A positive correlation between the activity of PAI-1 and lysis time of the formed clot (r = 0.70, p = 0.0006) was observed. CONCLUSION: Our data suggest that severe SARS-CoV-2 infection is associated with impaired fibrinolytic activity in blood, where fibrinolytic inhibitors are elevated leading to an increased resistance to clot lysis. Thromboelastography could offer a tool to investigate the contribution of the fibrinolytic status to the procoagulatory condition in COVID-19.


Subject(s)
COVID-19/complications , Fibrinolysis , Thrombelastography , Thrombosis/etiology , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Child , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Risk Factors , Severity of Illness Index , Thrombosis/blood , Thrombosis/diagnosis , Time Factors , Young Adult
13.
Blood ; 137(8): 1061-1071, 2021 02 25.
Article in English | MEDLINE | ID: covidwho-1013145

ABSTRACT

The pathophysiology of COVID-19-associated thrombosis seems to be multifactorial. We hypothesized that COVID-19 is accompanied by procoagulant platelets with subsequent alteration of the coagulation system. We investigated depolarization of mitochondrial inner transmembrane potential (ΔΨm), cytosolic calcium (Ca2+) concentration, and phosphatidylserine (PS) externalization. Platelets from COVID-19 patients in the intensive care unit (ICU; n = 21) showed higher ΔΨm depolarization, cytosolic Ca2+, and PS externalization compared with healthy controls (n = 18) and non-ICU COVID-19 patients (n = 4). Moreover, significant higher cytosolic Ca2+ and PS were observed compared with a septic ICU control group (ICU control; n = 5). In the ICU control group, cytosolic Ca2+ and PS externalization were comparable with healthy controls, with an increase in ΔΨm depolarization. Sera from COVID-19 patients in the ICU induced a significant increase in apoptosis markers (ΔΨm depolarization, cytosolic Ca2+, and PS externalization) compared with healthy volunteers and septic ICU controls. Interestingly, immunoglobulin G fractions from COVID-19 patients induced an Fcγ receptor IIA-dependent platelet apoptosis (ΔΨm depolarization, cytosolic Ca2+, and PS externalization). Enhanced PS externalization in platelets from COVID-19 patients in the ICU was associated with increased sequential organ failure assessment score (r = 0.5635) and D-dimer (r = 0.4473). Most importantly, patients with thrombosis had significantly higher PS externalization compared with those without. The strong correlations between markers for apoptosic and procoagulant platelets and D-dimer levels, as well as the incidence of thrombosis, may indicate that antibody-mediated procoagulant platelets potentially contributes to sustained increased thromboembolic risk in ICU COVID-19 patients.


Subject(s)
Apoptosis , Blood Platelets/pathology , COVID-19/pathology , Immunoglobulin G/metabolism , Adult , Aged , Blood Coagulation , Blood Platelets/metabolism , COVID-19/blood , COVID-19/complications , COVID-19/metabolism , Calcium/metabolism , Cohort Studies , Female , Humans , Male , Membrane Potential, Mitochondrial , Middle Aged , Phosphatidylserines/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Thrombosis/blood , Thrombosis/etiology , Thrombosis/metabolism , Thrombosis/pathology
14.
Trials ; 21(1): 635, 2020 Jul 10.
Article in English | MEDLINE | ID: covidwho-640432

ABSTRACT

OBJECTIVES: The aim of this trial is to identify the effect of ambulatory treatment in early COVID-19 disease with hydroxychloroquine on the rate of hospitalization or death in older patients above the age of 64. TRIAL DESIGN: Parallel, 2:1 randomization, double blind, placebo-controlled, multi-center trial. PARTICIPANTS: Male and female patients above the age of 64 (i.e. ≥65 years of age) with COVID-19 diagnosis confirmed by SARS-CoV2 positive throat swab (PCR). Patients can only be included within 3 days of symptom onset in ambulatory care if they consent to the study procedure and are able to adhere to the study visit schedule and protocol requirements (including telephone visits concerning symptoms and side effects). Severity of disease at inclusion is mild to moderate defined as not requiring hospital admission: SpO2 >94%, respiratory rate <20, mental state alert, no signs of septic shock. Cardiac risk is minimised by requiring a Tisdale score ≤ 6. Patients are recruited in the two german cities of Ulm and Tübingen in various ambulatory care settings. INTERVENTION AND COMPARATOR: Each patient will be given a first dose of 600 mg Hydroxychloroquine or the equivalent number of placebo capsules (3 capsules) at the day of inclusion. From the 2nd day on, each patient will get 200 mg or the equivalent number of placebo capsules twice a day (400mg/day) until day 7 (6 more does of 400 mg); a cumulative dose of 3 g. MAIN OUTCOMES: Rate of hospitalization or death at day 7 after study inclusion RANDOMISATION: All consenting adult patients having confirmed COVID-19 are randomly and blindly allocated in a 2:1 ratio to either IMP or placebo. The biostatistical center produced a randomization list (block randomization) with varying block length and stratified for the study center. This list is provided for packaging to the pharmaceutical unit which is providing encapsulated placebo and IMP. Only the pharmaceutical unit is aware of group allocation according to the randomization list. BLINDING (MASKING): Patients and investigators, as well as treating physicians are blinded to the treatment- allocation. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): In the first stage of an adaptive design 120 patients in a 2:1 ration: 72 Verum and 36 Placebo, plus an increase for 10% drop outs. After interim analysis, the total sample size will be calculated based on the effect seen in the first stage. Total sample size is estimated approximately n = 300-400 patients. TRIAL STATUS: Protocol version number: V3, 19.05.2020 Recruitment not yet started but is anticipated to begin by June 2020 and be complete by December 2020 TRIAL REGISTRATION: ClinicalTrials.gov: NCT04351516 , date: 17 April 2020 EudraCT: 2020-001482-37, date: 30 March 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Ambulatory Care , Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Clinical Laboratory Techniques , Coronavirus Infections/drug therapy , Hydroxychloroquine/administration & dosage , Pneumonia, Viral/drug therapy , Age Factors , Aged , Aging , Antiviral Agents/adverse effects , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Cause of Death , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/virology , Double-Blind Method , Drug Administration Schedule , Female , Germany , Hospitalization , Host-Pathogen Interactions , Humans , Hydroxychloroquine/adverse effects , Male , Multicenter Studies as Topic , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Predictive Value of Tests , Randomized Controlled Trials as Topic , Risk Factors , SARS-CoV-2 , Time Factors , Treatment Outcome , COVID-19 Drug Treatment
15.
Virchows Arch ; 477(3): 349-357, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-618186

ABSTRACT

The pandemia of coronavirus disease 2019 (COVID-19) has caused more than 355,000 confirmed deaths worldwide. However, publications on postmortem findings are scarce. We present the pulmonary findings in four cases of fatal COVID-19 with a spectrum of lung pathology reflecting disease course and duration, invasive therapies, and laboratory features. Early disease is characterized by neutrophilic, exudative capillaritis with microthrombosis and high levels of IL-1beta and IL-6. Later stages are associated with diffuse alveolar damage and ongoing intravascular thrombosis in small to medium-sized pulmonary vessels, occasionally with areas of infarction equivalents, accompanied by laboratory features of disseminated intravascular coagulation. In late stages, organizing pneumonia with extensive intra-alveolar proliferation of fibroblasts and marked metaplasia of alveolar epithelium can be observed. Viral RNA is encountered in the lung, with virus particles in endothelial cells and pneumocytes. In many patients, multi-organ failure with severe liver damage sets in finally, possibly as consequence of an early-onset pro-inflammatory cytokine storm and/or thrombotic microangiopathy.


Subject(s)
Coronavirus Infections/pathology , Lung Diseases/pathology , Lung Diseases/virology , Pneumonia, Viral/pathology , Aged , Autopsy , Betacoronavirus , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Thrombosis/pathology , Thrombosis/virology
SELECTION OF CITATIONS
SEARCH DETAIL